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The methods for locating the positions of the anomalous scatterers in a centrosymmetric structure and 
determining the signs of the reflexions using the data collected at two neutron energies are given. The 
results are general and can be used for X-ray anomalous scattering as well. 

In an earlier publication (part I, Singh & Ramaseshan, 
1968a) the authors have suggested a method of locating the 
position of the anomalous scatterers and determining the 
phases of the non-centrosymmetric structure factors using 
the data collected at two neutron energies. A similar ap- 
proach for centrosymmetric structures is reported in this 
communication. 

The notation used here is the same as in part I (Singh & 
Ramaseshan, 1968a). 

Location of the anomalous scatterers 

Let us consider a centrosymmetric structure containing 
nn identical anomalous scatterers with their scattering 
lengths of the form bo+ b'+ ib" and n~v normal scatterers. 
The structure factor is given by 

F(H) = FN(H) + FA(H) + iF~(H) 
= ~-(H) + iF~(H) (1) 

where 

o*-(H) = FN(H) + Fn(H) 
Fa(H) = b(r)x 
F~(H) = b(i)x 

x = 2 27 cos 2~ t t .  rm exp -- (Bin.  - - - - ~ - ]  
j= l  

nA [ sin2 0 ] 
FN(H) = 2 27 bm cos 2rcH. rNJ exp - B2vj -22 " 

j= l  

Following the procedure indicated in an earlier publica- 
tion (Singh & Ramaseshan, 1968a), equation (1) can be 
rewritten for two neutron energies E~ and Ez as follows: 

[FN(H)[ 2 + 2b l(r)xFu(H) 
+ {b2(r) + b2(i) }lxl 2 - IF, (H)I 2 = 0 (2) 

I FN(H)[2 + 2b2(r)XFN(H) 

+ {b2(r)+b2(i)}lx[ 2 -  IFe(H)I2= 0 (3) 

On eliminating IFN(H)I2 between (2) and (3) and noting 
that [xF2v(H)]2= Ixl21FN(H)I2 we get 

P Ixl 4 -  2Qlx[ 2 + R = 0 ,  (4) 
where 

P = {bl(r) -- bz(r) }2[2 {b~(i) + b2~(i) } 

+ {bl(r) - bz(r)}z] + {b2(i) _ b2(i)}2 

Q = {bl (r) - b2(r) }2[[Fj (H)[2 + [F2(H)I2] 
+ {b2(i)- b2(i) } [IF~(H)I z -IF2(H)I 2] 

R =  {IF~(H)[2-IFz(H)12 }2. 

Equation (5) can be obtained from equation (14) of 
Singh & Ramaseshan (1968a) by letting IF, n~(H)I2= 
IFI(H)I 2, [Fm2(H)[ 2 = [F2(H)I 2 and 6 = 0 .  

The roots of equation (5) are 

[ Q2 R ] 1/2 
Q + (5) Ix±lZ= -~- - p2 p 

Thus for a given set of values of IF1(H)I z and IFz(H)l 2 
two values of Ixl 2 and [FN(H)I z are possible. To understand 
the physical significance of the two roots let us consider a 
case with bl(i) = b2(i) = 0; equation (5) then gives 

Ix+l z= {]FI(H)I + IF2(H)l}2/{bl(r)-bz(r)} 2 (6a) 

Ix-I z = {IF1(H)I- ]FE(H)I }Z/{bl(r)- b2(r)}2 (6b) 

Further, writing equation (1) for two neutron energies 
and subtracting one from the other we have for bl(i)= 
b2(i) = 0 

FI(H) - Fz(H) = {bl(r) - bz(r)}x 
or 

[FI(H)]S(F1)- IF2(H)IS(F2) = {bl ( r ) -  bz(r) }x. (7) 

S(Fa) and S(F2) are the signs of F~(H) and F2(H). It is 
well to note that if b~(i) and b2(i) are not zero, F,(H) and 
F2(H) have phases different from 0 and zr. In such cases we 
can only talk of the signs of ~-I(H) and ~2(H).  

On comparing equation (7) with (6a) and (6b) we find 
that [x+[2 and fx_[2 are the correct solutions for the cases 
S(~-1) 4:S(~-2) and S ( ~ i ) =  S(~-2) respectively. 

It can be easily shown that S ( ~ , ) : / : S ( ~ 2 )  occurs when 

S(N) # S(x) 
and 

]bl(r)xl > IFlv(H)I > Ib2(r)xl 
for 

&(r) > bE(r). (8) 

In the case of X-ray anomalous scattering the changes 
in scattering factors due to change in wavelength are not 
large and therefore the reflexions with S(~ '~)-¢S(~2)  will 
be very weak. In the case of neutron anomalous scattering 
these changes may be quite large. In such cases the reflexions 
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with S(~'1)#S(~-2) may be strong but the number of such 
reflexions is limited owing to the small probability of con- 
dition (8) being satisfied. Thus Ix-I 2 will represent the cor- 
rect roots for most reflexions. The change of sign however 
can occur more frequently if scattering length for one of 
the energies, say Ez, is negative [i.e. bz(r) is negative and 
further for the sake of discussion we shall assume again 
that ba(r)< bs(r)]. The conditions to be satisfied for such a 
change are 

Iba(r)xl > IF~v(H)l ff S(N)=S(x)  
or 

Iba(r)xl >IFN(H)I if S ( N ) ~ S ( x ) .  

In practice it seems advantageous to choose the neutron 
energies such that bl(r) and bz(r) are of the same sign. 

For  structures with large 'heavy atom' ratio, the position 
of the anomalous scatterer can be determined by an ordi- 
nary Patterson synthesis or synthesis with IFa(n)l z 
+ IF2(H)I z (Ramaseshan, 1966). The latter is known to 
contain only A - A  and N - N  vectors if the neutron ener- 
gies are  chosen so that  bx(r)= -b2(r) .  As the 'heavy atom' 
ratio decreases, an increasing background is provided by 
the N - N v e c t o r s .  For  a small 'heavy atom' ratio, A - A vec- 
tors can hardly be distinguished from the N - N  vectors. It 
is  in such cases that  the present method is particularly use- 
ful. Further for a structure with small 'heavy atom'  ratio, 
cases with S(~'1)#S(~-2) are not  many and Ix-I 2 repre- 
sents the correct root  for most reflexions. 

Equation (4) has coincident roots if E~ and E2 are chosen 
so that  bl(r)=b2(r) and bffi)¢b2(i). The roots are then 
given by 

Ix+l 2 = Ix_l z = Q/P.  

Thus there is no ambiguity in the determination of Ixl 2. 
However in such a case the signs of the reflexions cannot be 
determined [see equation (9)]. 

A Patterson synthesis with ~ ( r ) Ix - I  2 as coefficients will 
yield the positions of the anomalous scatterers. A compari- 
son of the calculated Ixl 2 values with those obtained from 
equation (4) will indicate the cases in which a wrong solu- 
tion has been chosen. Once such corrections have been 
made Ix-I 2 values from equation (4) can be used to refine 
the thermal and the positional parameters of the anomalous 
scatterers. 

The sign determination 

On subtracting equation (3) from (2) we get, 

2FN(H) (b l ( r ) -  b2(r)}x = (IFl(H)l 2 -  IF2(n)l 2 } 
- [{b~r) + b~( i )}-  {b~(r) + b~i)}] I x l  z . (9) 

Thus, x being known, F.~,(H) can be determined. With this 
all the information necessary for solving a structure is 
complete. A Fourier synthesis with F~v(H) as coefficients 
will reveal the position of the normal scatterers. 

As pointed out in the previous section, the choice of two 
neutron energies such that  ba(r)=bz(r) and bl(i)#b2(i) 
leads to unique solution of Ixl z. However on letting bl(r)= 
bz(r) in equation (9) the term containing F~v(H) vanishes 
and equation (9) becomes an identity. Thus F~v(H) cannot 
be determined under these conditions. However, from equa- 
t ion (2) or (3), both of which are identical under the condi- 
tion bl(r )= bz(r)= b(r), we get 

IF~'(I-I) I = - b(r)x + [b2(r) lxl 2 
+ (IFx(H) I z - (~(r)  + b~(i)) Ixl2}] 1/z. 

These two roots correspond to the two eases (i) F~x:(l-I) 
having the same sign as b(r)x and (ii) Fs(H) having a sign 
opposite to that of b(r)x. However this ambiguity cannot be 
resolved. 

Thus an attempt to combine the data at two neutron 
energies to give Ixl2 leads to two possible solutions [equa- 
tion (5)]. The correct roots can be chosen indirectly and a 
Patterson synthesis with these will give the position of the 
anomalous scatterers. Equation (9) can then be used to 
determine F~v(H). 

Equation (6) leads to a unique solution for bl(r)=b2(r) 
and bl(i) ~ b2(i) but F~v(I-I) cannot be determined from equa- 
t ion (9). This situation is similar to that  encountered in the 
noncentrosymmetric case (Singh & Ramaseshan, 1968b) 
wherein such a choice of radiation gives Ixl 2 unambiguously 
but the ambiguity in the phase remains unresolved. 
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An addendum to Acta Cryst. (1968), B24, 429. 

In an earlier article under this title (Swink & Carpenter, 
1968) we neglected, through an oversight, to refer to a more 
recent powder diffraction study (Cheesman & Hawes, 1959) 
covering the entire composition range of iodine-bromine 
mixtures. The discrepancy between the cell constants re- 
ported in the latter paper for a 50 at. % powder and those 
reported by us for single crystals of the same composition 

remains unexplained, despite rechecking of original photo- 
graphs in both laboratories (Cheesman, 1968). 
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